K24U 4024

Reg. No. :

Name :

First Semester B.Sc. Mathematics/B.Sc. Computer Science With Al and ML Degree (C.B.C.S.S. – OBE-Supplementary/Improvement) Examination, November 2024 (2019 to 2023 Admission) Complementary Elective Course

1C01 MAT-CS: MATHEMATICS FOR COMPUTER SCIENCE - I

Time: 3 Hours Max. Marks: 40

PART - A

Answer any 4 questions from this part. Each question carries 1 mark. (4×1=4)

- 1. Find $D^n \log(ax + b)$.
- 2. Find the Maclaurin's series expansion of the function sin x.
- 3. Evaluate $\lim_{x\to 0} \frac{\sin x}{x}$.
- 4. If the rank of the matrix $\begin{pmatrix} 10 & 8 \\ 5 & y \end{pmatrix}$ is one, then find y.
- Define Equivalent matrices.

PART - B

Answer any 7 questions from this part. Each question carries 2 marks. (7×2=14)

- 6. If $y = \frac{(ax + b)}{(cx + d)}$, show that $2y_1y_3 = 3y_2^2$.
- 7. Find $D^n[\sin(ax + b)]$.
- 8. Find the n^{th} derivative of $2^x \cos^9 x$.
- 9. Verify Cauchy's Mean-value theorem for the function $\log_e x$ and $\frac{1}{x}$ in the interval [1, e].

K24U 4024

-2-

- 10. Verify Rolle's theorem for $f(x) = x(x + 3)e^{\frac{-1}{2x}}$ in (-3, 0).
- 11. Evaluate $\lim_{x\to \frac{\pi}{2}} (\sin x)^{\tan x}$.
- 12. Are the vectors (2, 1, 1), (2, 0, −1), (4, 2, 1) linearly dependent? Justify.
- 13. Reduce the matrix into normal form and hence find the rank.

$$A = \begin{pmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{pmatrix}$$

- 14. If $A = \frac{1}{3} \begin{pmatrix} 1 & 2 & a \\ 2 & 1 & b \\ 2 & -2 & c \end{pmatrix}$ is orthogonal, find a, b, c and A^{-1} .
- 15. Reduce the law $y = ae^{bx}$ into a linear law.

Answer any 4 questions from this part. Each question carries 3 marks. (4×3=12)

- 16. Given $y^2 = f(x)$, a polynomial of third degree, then evaluate $\frac{d}{dx} \left(y^3 \frac{d^2 y}{dx^2} \right)$.
- 17. Find the nth derivative of $\frac{1}{x^2 + a^2}$.
- 18. Prove that (if 0 < a < b < 1), $\frac{b-a}{1+b^2} < \tan^{-1}b \tan^{-1}a < \frac{b-a}{1+a^2}$. Hence show that $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$.
- 19. Expand $\log_e x$ in powers of (x 1) and hence evaluate $\log_e 1.1$ correct to 4 decimal places.
- 20. Using partition method, find the inverse of $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & 0 & 4 & 0 \\ 0 & 1 & 0 & 3 \end{bmatrix}$

- 21. Solve the equations $x_1 x_2 + x_3 + x_4 = 2$, $x_1 + x_2 x_3 + x_4 = -4$, $x_1 + x_2 + 3$ $x_3 - x_4 = 4$, $x_1 + x_2 + x_3 + x_4 = 0$, by finding the inverse by elementary row operations.
- 22. Write the working procedure to fit the parabola $y = a + bx + cx^2$ to a given data.

PART - D

Answer any 2 questions from this part. Each question carries 5 marks. $(2 \times 5 = 10)$

- 23. If $y = (\sin^{-1}x)^2$, show that $(1 x^2)y_{n+2} (2n + 1)xy_{n+1} n^2y_n = 0$. Hence find $(y_n)0$.
- 24. Find the value of a, b and c such that $\lim_{x\to 0} \frac{x(a+b\cos x)-c\sin x}{x^5}=1$.
- 25. Test for consistency and solve : x 2y + 3t = 2; 2x + y + z + t = -4; 4x - 3y + z + 7t = 8.
- 26. Fit a second degree parabola to the following data.

1 1.8 1.3 2.5